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1. INTRODUCTION 

We consider a randomly perturbed dynamical system described by 

the  equation 

dx/dt = f (x)  + G(x)k(t) , t L 0, ( 1) 

where x,f a re  n-vectors, G i s  an n X n matrix and k ( t )  i s  n-dimensional 

Gaussian white noise. 

the  theory of random vibrations [ 2 ] .  

i n t e re s t  t o  know under what conditions the  process 

Such equations a r i s e  i n  control theory 111, and 

I n  these applications it is  of 

x = (x ( t ) ,  t 2 0) 

generated by (1) i s  stable, i n  t h e  sense t h a t  X admits a unique in- 

variant probabi l i ty  distribution. 

desirable  t o  estimate various s ta t ionary averages 

averages exi st. 

If X i s  s tab le  then it i s  often 

&( L( x)), when these 

I n  a previous paper [ 3 ]  a c r i t e r ion  of Lyapunov type was given f o r  

s t a b i l i t y  i n  the  sense described. 

c r i t e r ion  (Theorem 3.1) i s  obtained fo r  the  existence ( f in i teness)  of 

the  s ta t ionary average 

function. 

orders ex i s t  when, i n  (l), G is  bounded a d  the  unperturbed system 

dx/dt = f(x) i s  of  Lur'e type. 

I n  the  present.note a Lyapunov 

&(L(x)] where L i s  an a rb i t r a ry  nonnegative 

This result i s  applied t o  show t h a t  algebraic moments of a l l  

The existence c r i te r ion  i s  extended t o  yield an effectLve method 

The method i s  of calculat ing an upper bound for  &{L(x)) (Theorem 4.1). 

i l l u s t r a t e d  by an example from control  theory. 
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2. S T A T E "  OF THE PROBLEM 

We s t a r t  with a precise version of (l), namely I t G I s  equation 

dx(t)  = f ( x ( t ) ) d t  + G(x(t))dw(t) 

t 1 0  

x(0) = xo 

The following assumptions are made w i t h  respect t o  

(i) x,f a r e  vectors i n  Euclidean n-space E 

n X n matrix. 

(ii) ( w ( t )  ; t Z 0) i s  a Wiener process i n  E 

( 2 ) :  

n Z 2  1 a n d G i s a . n  

(iii) x i s  a random variable independent of t h e  process w ( t ) .  
0 

( i v )  There i s  a constant c > 0 such t h a t  

f o r  all x, y E E. (Here 1 . 1  denotes Euclidean norm of a vector 

or matrix.) 

(v) There i s  a constant E > 0 such t h a t  

for a l l  x,y E E. ( A  prime denotes transpose of a vector o r  

matrix). 

Under these assumptions it i s  known (cf .  [ 3 ] )  t h a t  (2), interpreted 

i n  t h e  sense of It;, defines a continuous, strongly Fe l le r  process 

x = (x ( t ) ,  t 2 0) . 
The different ia l  generator of X will be denoted by 2 , where 
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whenever the  indicated derivatives ex is t .  ( I n  ( 3 ) ,  u i s  t h e  vector of 

f irst  ' p a r t i a l  der ivat ives  o f  u and uxx i s  the  matrix of second p a r t i a l  

der ivat ives) .  

X 

I n  t h e  following w e  sha l l  always assume t h a t  X i s  pos i t ive  [4]* 

Under these conditions it i s  known [4] t h a t  there  ex i s t s  a unique in- 

var iant  probabi l i ty  measure p defined on the  Bore1 s e t s  B C E: t h a t  is, 

i f  P denotes probabi l i ty  measure on the  paths of X, and i f  

then 

A n  effect ive c r i t e r i o n  f o r  pos i t i v i ty  of  X i s  given i n  [3]. 

Let L(x) 2 0 be Hhder  continuous on the  compact subsets of E. 

The main problem i s  t o  obtain a su f f i c i en t  condition t h a t  

be f i n i t e .  Subsequently we sha l l  describe a method for  der iving an upper 

bound on &{ L(x)) . 
In t h e  following, t he  terms smooth, and normal domain, have t h e  

same meaning as i n  131. 

3. A CRITERION FOR EXISTENCE OF €!(L(x)) 

A Lyapunov c r i t e r i o n  for the  existence of & ( L ( x ) )  can be derived 

The r e s u l t  i s  given by arguments very s i m i l a r  t o  those of 131 and [4]. 
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i n  Theorem 3.1. We start with some preliminary lemmas. 

Let D be a normal domain w i t h  boundary r, and l e t  T~ be t h e  f irst  

time X h i t s  I'. 

= x E E. Since X i s  positive, < m, x E E - D. 
Let E denote expectation on t h e  paths of X when x(0) = 

X 

Lemma 3.1 

L e t  - 

- - 
I f  u(x0) < 00 fo r  some point x E E - D then U(X) < 00 fo r  a l l  x E E - D. - 0 - 
Furthermore 

- de [ ~ ( x ) ]  = - L(x), x E E - D 

U(X) = 0, x E r. 

Proof. 

The proof c losely follows t h a t  of Lemma 5.3 of [ 4Iy Let ( D  ;n=1,2,. . .) n 

be an increasing sequence of normal domains such t h a t  D c D  

l i m  Dn = E ( n  + m). 

x eD1- D and 1' 0 

L e t  .rn be the  first time X h i t s  t h e  boundary FUT' n 

of Dn- D, and define 
7 n 

u,(x) = Ex( J L[x(t)]dt), x E En- D 
0 
7 r 

U(X) = Ex( J L[x(t)]dt), x E E - D. 
0 

Since X is posit ive (and hence, regular [4]) T~ t Tr ( n  +-) and therefore  

un(x) f U(X) (n  +a). For fixed m 1 1 

with convergence a t  l e a s t  for  x = x We now use t h e  fact t h a t  u,(x) is t h e  
0' 

I 
1 
I 
I 
I 
I 
1 
1 
I 
I 
I 
I 
i 
I 
1 
I 
I 
I 
1 



I -  
-5- 

unique smooth solution of 

gX) E 0, x E r u rn . 

(see e.g. [3], ch. 5, P5). ~ e t  vn(x) = un+l (x) - u,(x), x E En- D, Then 
- f [vn(x)l = 0, x E D ~ -  D and (since un(x) I 0) vn(x) 2 0, x E r u rn. 

- 
By the  maximum principle  v,(x) h 0, x E: D, - D. 

of t he  ser ies  ( 5 )  except the  first are posi t ive functions f o r  which 

1 [ v(x)] = 0, and the  ser ies  converges for  x = x 

Harnack inequality [a it f o l l a r s  t h a t  t h e  series converges fo r  all 

x E Em- D and U(X) satisfies (4) f o r  x E Dm- D. 

t h e  result follows. 

It follows t h a t  a l l  terms 

From the  generalized 
0. 

- 
Since m is a rb i t r a ry  

Lemma 3.2 

A necessary and sufficient condition t h a t  

elL(x)) 

i s  t h a t  
r T 

& { 1 IJx(t)]dt)  < , x E E. 
X O  

Proof. - 
W e  use the  construction and notation of [ 41. Let  D be a normal 

domain with boundary rl such that  D C % and r n 5 = 4. Let  '5 denote 

t he  length of a cycle, namely, i n  obvious notation, 

T = min ( t  : x( t )  E r I x(0) E r and x ( s )  E r, f o r  some 

s, 0 c 6 < t). 

Let  

sets of I'. 

be the  f i n i t e  invariant measure (see [4]) induced on t h e  Bore1 

Then if K i s  an arbi t rary compact subset of E we have, within 
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a constant of normalization, 

(7) 

K where 7 = meas ( t  : 0 5 t I T, x ( t )  E: K).  

Let I, (x) be an increasing sequence of simple functions (constructed n 

on compact sets)  such t h a t  Ln(x) = 0 ( 1  X I  > n) and Ln(x) + L(x) ( n  -+ a). 

From (7) 
T 

I ddx)Ln(x)  = J ;(ax) ex{ I Ln[x(t) ldt) ,  
E 

n = 1,2, ...; 
r 0 

and by monotone convergence 

Let T1 = min ( t  : x ( t )  E r,l x(0) E r) . By t h e  strong Markov property 

x E r. (9) 

Since El i s  compact t h e  f irst  expectation on t h e  r i g h t  s ide of (9) i s  

bounded for x E r. If 

then, by Lemma 3.1, u(y) i s  smooth, and therefore bounded on PI. By t h e  

strong Feller property, & x ( ~ [ ~ ( ~ l ) ] )  i s  continuous, hence bounded on r ; 
it follows from (8) t h a t  e{L(x)) < 00 . 

' 

Conversely i f  (6) fa i l s  for some x E E - D then by Lemma 3 . 1  (6) 

fa i l s  for  all x E E - D, and by (8) and (9), e{L(x)) = 00 . 
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If t h e  equation 

has a smooth pos i t ive  solut ion v(x) i n  E - D - 
then - 

e ( a x ( t ) ] d t )  < = 
X O  

Proof - 
Let {Dn ; n = 1,2;. .) be a sequence of normal domains constructed 

as i n  the  proof of Lemma 3.1, and l e t  un(x) be t h e  corresponding sequence 

of smooth functions such t h a t  

%[un(x)] = -L(x), x E D,- 

UJX) = 0, x E r u rn. 
Since %[v(x) - un(x)] = 0, x E Dn- - D, and v(x)-un(x) Z 0, x E I' U I',, 

we have un(x) 5 ~ ( x ) ,  x E En- D ; therefore  

This completes the  proof. 

Before s t a t i n g  Theorem 3.1 we introduce a c l a s s  of real-valued 

functions V, analogous t o  Lyapunov functions, with t h e  following properties.  

P1 : V i s  defined f o r  x E ?i where 
V 

D = (X  : I x  I > R) (R < 0 i s  a rb i t r a ry )  
V 

P2 : V i s  continuous i n  5 and i s  twice continuously d i f f e ren t i ab le  i n  D 
V V' 

P : V(X) + +  00 as I x  I + O D .  3 
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Theorem 3 . 1  

Let X b e  posit ive.  If there  ex i s t s  a function V with propert ies  - 
P -P and i f  1 3  

V 
i [ V ( x ) ]  5 - L(x), x E: D 

then - 
&{L(X)) < = . 

We remark t h a t  i f  X i s  pos i t ive  and L(x) i s  bounded then E(L(x)) i s  

obviously f in i te .  then, by 

Theorem 2 of [3], t he  existence of V already implies t h a t  X i s  posit ive.  

If L(x) i s  bounded away from zero f o r  x E D 
V 

Proof 

By Lemmas 3.2 and 3.3 we have t h a t  &(L(x)) < = i f  and only i f  there  

ex i s t s  a normal domain D such t h a t  t h e  equation 

- 
has  a smooth pos i t ive  solution u(x) defined for  x E E - D. 

define a sequence (Dn) of normal domains as i n  t h e  proof of Lemma3.1. The 

remainder of t h e  proof follows t h a t  of Lemma 3.3,with v(x) replaced by V(x). 

By adding a constant t o  V i f  necessary we can arrange t h a t  V(x) 5 0, x E Dv. 
If %[un(x)] = - L(x) (x  E Dn - D),  un(x) = 0 (x@Urn),  then 

0 d u (x) 5 u 

([6]p.344 ) t ha t  l i m  un(x) e x i s t s  and i s  a solution of (10) f o r  x E E - D. 

Let D = E - D, and 

- 

(x) 5 V(x), x E En- D. It follows by a compactness theorem n n+ 1 - 

Remark. 

replaced by 

The proof of Theorem 3 . 1  remains unchanged i f  property P of V i s  3 

P' * 3 '  v(x> 2 0, x E 'iy . 
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4. ESTIMATION OF & {  L( x)) . 
In  t h i s  sect ion w e  assume t h a t  &(L(x)) < and der ive an upper 

bound f o r  t h i s  quantity. The resu l t  i s  given i n  Theorem 4.1. 

For x E E and t > 0 define 

Lemma 4.1 

If &(L(x)) < = then u(t,x) < 0 fo r  a l l  t > 0, x E E. - - 
Proof. 

We use the  notat ion and construction of t h e  proof of Lemma 3.2 and 

assume x E r. If T i s  t h e  length of a cycle which starts a t  x then 

i s  bounded f o r  x E r. With t < and fixed, l e t  v(x) denote the  number 

of complete cycles which occur in  t h e  i n t e r v a l  [ O , t )  when x(0) = x E r. 
Obviously u ( t ,x )  < = if &,Iv(x)) < . Let P = min{lx-yl : x E r, y E rlI 

By o w  assumptions, p > 0; and i f  E > 0 

uniformly f o r  x E I‘. (The last estimate can be derived as i n  [7],VI,§ 3.) .  

Consider a chain of n cycles s t a r t i ng  at  x with lengths ‘rl, ..., Tn. 
t h e  strong Markov property 

By 

pX{v(x) = n) 4 P (‘rl+...+ T < t) X n 
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where c i s  independent of t, and t > 0 i s  su f f i c i en t ly  small. Therefore 

sup[Ex(v(x)) : xd') < QD for  some t > 0, hence (by continuation over a 

f i n i t e  number of subintervals) fo r  every t > 0. 

Lemma 4.2 

I f  &(L(x)) < 00 then - 
-1 

&(L(x)) = lim t u(t ,x) 
t-, - 

Proof 
~~ 

L e t  Ln(x) ( n  = 1929000) be a sequence of nonnegative simple functions 

By t h e  corol lary t o  such t h a t  Ln(x) f L(x) (n + 0) and Ln(x) I O9 I x I > n. 

Theorem 3.1 of [hi, 
t 

l i m  l i m  t-l Ex( I, Ln[x( s ) ] d s )  
n+ao t + ~  

L e t  P(t,x,B) be the  t r ans i t i on  function of X. I f  p i s  the  invariant  

measure of  X then, by repeated applications of Fubini 's  Theorem, 
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Passing t o  the  l i m i t  (n  +a) we have by monotone convergence 

&(t’lu(t ,x))  = &(L(x)? . (13) 

Now l e t  X,(x) = 1, I XI h n ; = 0, otherwise. Suppose t h a t  f o r  some 

E > 0 there  e x i s t s  a sequence t 

in tegers  such t h a t  

00 and a subsequence n(v) of  pos i t ive  
V 

t -1 v exhv I, xn(v)[x(s)l YX(S)ldS? > f, v = 1,%.-* 

From (13) and (14) it follows tha t  

&[Xn(v)(X) Lb)?  > E , v = 1,2,**-, 

which contradicts t he  f a c t  t h a t  e(L(x)) < . .Hence fo r  each fixed x E E, 

-1 t t 
~ x [ t - 1 ~ L n t 4 s ) l d s l  - iex[ t  I Y x ( ~ ) l d s I  

0 0 

as n +- , uniformly i n  t for  t suf f ic ien t ly  large. 

limits i n  t h e  l e f t  s i d e  of  (z), and the  result (11) follows by monotone 

We cantherefore  interchange 

convergence. 

We consider functions V with propert ies  Y -7 where these d i f f e r  1 3’ 
from properties P -P of section 3 only i n  t h a t  now w e  require D = E. 1 3  V 

Theorem 4.1 

Let X be positive, Z there ex i s t  a function V with propert ies  - - -  ---- - 
P -? and a pos i t ive  constant k such t h a t  1 3 - -  -- 

%[V(x)] S k - L(x), x E E, 

then - 
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I 
I 

Proof - 
We f i rs t  show t h a t  &(L(x)} < = . Indeed i f  D i s  a normal domain 

with boundary r and if v(x) = ex( T ~ }  then  tf[v(x)] L -1 ( X E  E - D )  

and v(x) = 0 (xer).  It follows t h a t  t h e  function V(x) + kv(x) s a t i s f i e s  t he  

conditions of Theorem 3.1. 

Let Dn = ( x  : 1x1 < n) and put z = min ( t  : l x ( t ) l  = nl x(0) = n 

Let tn = min(t,.r ) and define = x E Dn}. n 

t 
un(t,x) = Ex(./ nL[x(s)lds} 

Since T 

0 

t > 0 ,  x E D 

We now use the f a c t  t h a t  u ( t ,x )  i s  the  unique smooth solution of t he  problem 

( n  = 1,2 ,... ). 
n 

(n  +-) we have u,(t,x)fu(t,x). 
n n 

Un(t,x) = 0, t > 0, 1x1 = n 

(see  e.g.[5], Ch. 5 ) .  

= kt  + V(x) - un(t,x) ( t L 0, x E En) then 

We can assume t h a t  V(x) h 0, x E E. If Wn(t,x) = 

wn(o,x) h 0 ; and wn(t,x) L 0, I XI = n. By t h e  maximum Pr ic iP le  for  

parabolic equations W ( t ,x )  Z 0 ( t  2 0, X E En) ; t h a t  i s  U,(t,X) 

hence 

k t  + v ( X >  ; 
n 

u(t ,x) 5 k t  + V(x) , t 1 0, x E E. 

The r e s u l t  now follows from Lemma, 4.2. 



5 - APPLICATIONS 

EXAMPLE 1 

L e t  X sa t i s fy  the  I t3 equation 

dx = Fxdt - bb(a)dt  + G(x)dw 

(3 = c'x (15) 

I n  (15), F i s  a constant matrix, b and c a re  constant n-vectors, and b i s  

a scalar-valued, i n  general nonlinear, function of 6. The non-stochastic 

d i f f e r e n t i a l  equation, obtained from (13) by s e t t i n g  G = 0, has been 

studied extensively i n  connection with t h e  Lur' e problem [ 81. 

Theorem 5.1 

L e t  t he  system (15) sa t i s fv  t h e  followina conditions: 

(i) All t he  eigenvalues o f  F have negative real pa r t s  

(ii) u d(u) > o for  a l l  I a1 su f f i c i en t ly  large;  &a) i s  - 
continuously different iable;  and dh( u)/du i s  bounded 

( - m < u < = ) .  

(iii) There exist two nonnegative constants a and f3 such t h a t  - 

Re(a + i(s) c' ( ioI-F)- l  b > 0 

f o r  all r e a l m  

( iv)  G(x) satisfies the conditions of section 2 and, i n  addition, 

I G(x)l i s  bounded f o r  x E E. 

for every Y > 0. 
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Proof. 

The pos i t iv i ty  of X was proved i n  [ 3 ] .  To s a t i s f y  t h e  conditions 
b 

of Theorem3.1we introduce a function V(x) of t he  form 
c' x 

?(x) = x'Px + B / Q(a)da 
0 

and define 

~ ( x )  = exp(Y ?(x)) 

where y > 0 w i l l  be chosen l a t e r .  

pos i t ive  def in i te  matrices P and Q such t h a t  

By a r e s u l t  of Meyer [9] there  ex i s t  

[Fx -~@(c 'x ) ] '  'YVx(x) 5 -x'Q,x (16) 

fo r  a l l  1x1 suf f ic ien t ly  large.  Moreover 

Since the  r ight  side of (17) i s  bounded it follows on adding (16) and 

(17) that ,  f o r  a rb i t r a ry  6 > 0, 

for  all I X I  su f f ic ien t ly  large.  Let 6~(0,1) be fixed. Now 

5 - y  ( l -S )x l&x  + Y 2 x'Rx (19) 

f o r  some posi t ive de f in i t e  constant matrix R. 

t h e  matrix (1-6)Q-TR i s  pos i t ive  de f in i t e  for y > 0 su f f i c i en t ly  small. 

Since Q i s  pos i t ive  d e f i n i t e  
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men, for  1x1 suf f ic ien t ly  large 

%PWI 5 - exp(ry(X)) 

V 
5 - 1x1 . 

The r e s u l t  now follows by Theorem 3.1. 

Remark. 

It i s  c lear  from the  proof that ,  under the  conditions of Theorem 5.1, 

&fL(x)) < provided 

fo r  8 > 0 suf f ic ien t ly  small. 

EXAMPLF: 2 

We sha l l  i l l u s t r a t e  t h e  application of Theorem 4.1 t o  the analysis 

of a simple control system. Suppose 

kl = x2 

k* = -x* -*(XI 3. x2) 

f 
where 

1, y Z l  

*(Y) = I Y y  I YI s 1 

-1, y 5 -1 

The null solution x1 = x2 = 0 i s  asymptotically stable.  If the  system 

i s  perturbed by Gaussian white noise it i s  of i n t e r e s t  t o  estimate the  

m e a n  square error  &{x ). 
2 
1 The prior ver i f ica t ion  t h a t  X i s  posi t ive will be 

omitted. Introducing perturbation terms and making t he  change of variables 
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x1 = x, x1 + x2 = y, we obtain 

dx = -(x-y)dt + a 11 dw 1 + a 12 dw 2 

dy = -Jr(y)dt + a21dw1 + a22dw2 

are independent 1-dimensional Wiener processes and t h e  1' "2 where w 

coef f ic ien ts  a are  constants. The d i f f e r e n t i a l  generator of t h e  (x,y) 

process i s  

i j  

B = ( a  11 a 2 1  + a12a22)/2 

To s a t i s f y  condition (v) of section 2 we assume t h a t  a11a22 - a12a21 # 0; 

i n  applications such a r e s t r i c t i o n  i s  c l ea r ly  not s ignif icant .  

2 To estimate &(x  3 we t r y  t o  construct a pos i t ive  function V(x,y) 

with continuous second der ivat ives  such t h a t  

f o r  some posit ive constant k. A s  a f irst  s t ep  we assume t h a t  t he  perturb- 

a t ion  t e r m s  are absent from (21) and evaluate 

V" (x,y) = .f"x(t)2dt (x(0) = x, Y ( 0 )  = Y). 
0 

The r e s u l t  i s  

2 2 
v" (X ,Y)  = x / 2  + xy/2 + Y /4 , IYI  s 1 

= x2/2 - x + xy - y2/2 + 2/3 
+ e1-'(x-y-1)/2 + 17/12 Y 2 1 

= v" (-x,-y) , y s -1 . (22) 

I 
1 
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From (22) we find t h a t  v"xx , V" a r e  continuous, but 
XY 

v" (x,l-0) = l / 2  , v (x,l+O) = 1 + 4 2  . 
YY !w 

To achieve the  required smoothness replace V" by v" , where 

2 -a(y - 1) 
+,Y) = V"(X,Y) - (5/4)(1 + X ) ( Y  - 1) e J 

y Z l  

= V"(X,Y> Y lul  5 1 
= v 1 (-x,-y) , Y 5 -1 

where a! > 0 i s  a r b i t r a r i l y  large. From ( 2 3 ) ,  

where f3 > 0 i s  a r b i t r a r i l y  small. Finally, l e t  

where r > 0 w i l l  be chosen la te r .  Then 

i f  K i s  suf f ic ien t ly  large. 

terms of %[VI we can obtain a value k 

choose 

By straightforward estimation of t h e  individual 

of K for which (24) i s  t rue ;  we then r 

k = m i n { k r :  r > 0 ) .  
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Carrying out t h e  estimates for  I yI 5 1 and I yI 2 1 separately, we find 

2 €!Ex ) < max (k',k") 

where 
1 2 

k' = ( A  + B + C/2) [l + C ( 9 C  

k" = (5/2)C2 + D + (C/2)(9C2 + 4D)' 

+ 4D)"] 
1 

and 

D = A + 2B + I B (  + 3C/2 

To obtain a rough idea of how conservative the  bound may be i n  

t h i s  casej suppose t h a t  A 0, B 2 0, C 4 . Then 

Analysis of the  system (21) based on 

of t he  nonlinear function Ji  yields  

s ta t is t ical  l inear iza t ion '  [ 101 

2 &(x ) -2 (77-/2)c2 (c  +a) . 
The qual i ta t ive  agreement between t h e  r e s u l t s  (25) and (26) i s  due t o  

the  spec ia l  choice of t h e  function V . We should emphasize t h a t  t he  

upper bound (23) w a s  derived rigorously; t he  estimate (26), although 

probably rel iable ,  was obtained by a heur i s t i c  procedure. 

0 

L 

I 
I 
I 
i 
I 
1 
1 
I 
1 
I 
I 
1 
1 
I 
I 
1 
1 
1 
1 
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